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Abstract

An elastodynamic conservation integral, the jk integral, is employed to
derive boundary integral equations for crack configurations, in a direct and
natural way. These equations immediately have lower order sinmgularities
than the ones obtained in the conventional manner by the use of the Betti-
Rayleigh reciprocity relation. This is an important advantage for the
development of numerical procedures for solving the BIE's, and for an
accurate calculation of the strains and stresses at internal points close to
the crack faces. For curved cracks of arbitrary shape the BIE's presented
here have simple forms, and they do not require integration by parts, as in
the conventional formulation. For the dynamic case, the unknown quantities
are the crack opening displacements and their derivatives (dislocation
densities), while for the static case only the-dislocation densities appear
in the formulation. For plane cracks the boundary integral equations reduce

to the ones obtained by other investigators.
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1. Introduction

N - . . 3 3 I .
A Boundary integral equations, in conjunction with the boundary element
L .
o . . . . .

- method, provide an effective numerical technique for the solution of
b . . . : .
K boundary value problems in solid mechanics. The boundary integral equation
\ ,
;\j method (BIEM) has been successfully applied to a wide range of problems in
&

ﬁ{ linear and nonlinear elasticity. Recent developments of the boundary

-
»r:< integral equation method have been concerned with applications to
2N elastostatic and elastodynamic crack analysis. The method is attractive for
‘{; crack analysis, because the semi-analytical nature of the BIEM makes it easy
E s . . s .

;: to take into account the singularities at the crack tips.

.

‘L The conventional BIE formulation, due to Rizzo (1967) and Cruse (1969),
ﬁ}f is based on the Betti-Rayleigh reciprocity theorem for two independent
‘N elastostatic or elastodynamic states. By choosing one of the states as the
( unknown field and the other as the basic singular solution (the Green's

_(i function), a representation integral for the displacement components can be
:({ derived. The integral, which is over the surface of the crack ccntains the
.‘:_‘ )

& crack opening displacements (the displacement jumps across the crack faces)
’-{ and derivatives of the Green'’s function in its integrand. Unfortunately, a
- direct limiting process on the representation integral for the displacements
o

7 as the observation point approaches a crack face, gives rise to a degenerate
. set of BIE’s, as shown by Cruse (1975). This has motivated the use of

iﬂ representation integrals for the tractions, and their corresponding boundary
\.‘"

H] integral equations, rather than displacement BIE’s. Such traction BIE's

. are, however, highly singuiar, and they cannot be solved directly by

s

o numerical methods. To circumvent these difficulties several approaches have
i] been proposed, see for example the papers by Cruse (1975,1987), Weaver
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(1977), Budiansky and Rice (1979), Schmerr (1982), Slédek and Slédek (1984),
Nishimura and Kobayashi (1987), Zhang and Achenbach (1988) and Budreck and
Achenbach (1988). Most of these studies first reduce the higher order
singularities to integrable ones, and then solve the modified BIE's
numerically. The reduction is achieved by the use of partial integration.
The required manipulations are reasonably easy for simple configurations
such as 3-D planar or 2-D straight cracks, but they become cumbersome for
curved cracks. Furthermore, different forms of the regularized BIE’s are
obtained through the non-unique integration-by-parts process, though they
are equivalent (see Cruse, 1987).

In this paper we present a new BIE formulation for crack analysis. The
motivation for this study is the paper by Hu (1987), who proposed a novel
way to obtain a new type of BIE, to solve elastostatic becundary value

problems. Hu's formulation is based on the conservation integral J In

K
the present paper it is shown that Hu’s BIE’s are especially suited for

solving crack problems. For elastodynamic problems, the Jk integral of
elastostatics is generalized to time-harmonic elastodynamics, and the result
is denoted by jk' Boundary integral equations are then derived from jk in a

direct and natural manner, for arbitrary crack configurations. The BIE's
that are obtained are immediately less singular than the ones of the
conventional formulation, and they do not require additional manipulation in
developing numerical solution procedures. The BIE’s presented in this paper
nave ralatively simple forms, and they reduce to those for elastostatics by
letting w - 0 and by using the appropriate static Kelvin solutions. For

planar and straight cracks the results agree with those obtained by other
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N
{ authors. New BIE’s derived from the complementary conservation integral ji
-_‘ .
L -.,':'1
R are also given, but these equations do not offer advantages over the
,.h~ ‘.l
- conventional formulation.
') o =y . .
W The significance of Jk (or Jk) integral as a relevant crack-tip
gy
oy
o parameter in linear and nonlinear fracture mechanics has been well
vy established (see Moran and Shih, 1987). The present paper presents a novel
p . application of such path independent or conservation integrals in
NN
K }3 elastodynamic and elastostatic crack analysis.
' }ﬁ 2. Problem Statement and Conventional BIE Formulation
. A crack is a surface of displacement discontinuity when external loads
oo
S are applied to the body. The faces of a mathematical crack are
Y .
L
r‘j infinitesimally close prior to loading, and they do not interact when loads
( are applied. This is an acceptable approximation for real cracks whose
vk
5o faces are initially sufficiently separated so that the faces will not touch
- when the body is disturbed.
o
o . . . .
i) In this paper we consider a three-dimensional (curved) crack of
ﬁf\f arbitrary shape which is contained in an unbounded, homogeneous, isotropic,
-':‘:"
fnj linearly elastic solid. The geometry is shown in Fig. 1. The solid is
g
[ subjected to time-harmonic motion, but the term exp(-iwt) has been
o suppressed throughout the analysis.
ol
ﬁ;- The stress equations of motion are given by (see Achenbach, 1973)
g
e
P
9.
;g o.. . + pwlu, = 0 , (2.1)
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{ where o, defines the stress components, uy denotes the displacement
:
':i' components, p is the mass density, and « is the angular frequency. In
K.
£9
. Eq.(2.1) body forces are not considered and the summation convention is
R~
\ implied. In the linear theory the strain components are defined as
-
e
o > ( ) (2.2
3, €.. =5 (u, . +u, . . .2)
o ij 2 71, j.i
The stress and strain components are related by Hooke's law
735 7 Cijkeke (2.3)
where Cijk! are elastic constants which for isotropic materials can be
o written as
=
o
e P = . s + + 5. ,58. . .
K. Cle£ A61J6k£ “(61k jl 612 Jk) 2.4
)
T
e
- ’
b= Here A and p are Lame’'s elastic constants and 6i. is the Kronecker delta.
. The tractions vanish on the faces of the crack, i.e.,
"G‘
+ARRY
2
"
A f. =o,.n, =0 X € A, (2.5)
K. i iji 3 ~
I- -
A
9.
~3 + - . + . c s )
F where A = A + A . For a scattering problem A is the insonified side of
-, A
- the crack and A~ is the shadow side. Also, n, is the unit normal vector of
.-._'.- J
‘_-—‘l IAA.
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( The total fields generated by the interaction of an incident wave with
)

o the crack can be written as

4.'

"
N in sc in sc

u, = u, + u; , .. =0.. +0,. |, (2.6)
i i i ij ij ij

\
D < .-

)
b

)\: where u;n and ai? represent the incident field in the absence of the crack,
. se¢  _sc

N and u; o, Uij define the scattered field. Both the total fields and the

partial fields satisfy Egqs.(2.1)-(2.3). For a given incident field the
scattered field has to satisfy the boundary conditions on the faces of the
.{i crack, Eqg.(2.5).

Following the procedure proposed by Rizzo' (1967) and Cruse (1969),

A

representation integral for the scattered displacement can be obtained by

using the Betti-Rayleigh reciprocal theorem and the fundamental solution due

T 1,
v

to a unit time-harmonic point force. For a 3-dimensional crack, the

»
x_¥

PR Ry Y

representation integral can be written as

{A'

N

R

‘-115(0(5) - f+ g(_fjk(yz)Aui(z)njdA(z), X i A . 2.7)
A

ol A

s . . G .
Here x is the position vector of the observation point, aijk(g-z) is the

2

-
-

-

stress Green’s function (Appendix A), and Aui(z) defines the displacement

',< jumps (crack opening displacements) across the faces of the crack.
f: As shown by Cruse (1975) for the static case, Eq.(2.7) will lead to a
- .
- degenerate BIE formulation as x - A", A natural remedy for this difficulty
¢
.:j
o
*7
:‘F
. %) N '\ J‘l TRV ‘l’\‘*'\-‘v’:-‘)‘ -V? - r¢ ’rh‘; ‘i. CM o WAt ',.,( v(u"-\‘-")\‘(%- )‘ ¢‘ v
"-\’ A '- ..'l‘ 'On ARy !:‘e'l n"o h,u .0.! O N ..0 - ‘-" n. ", q' RS LTRSS, -'.". WL




(N
l' .,-It

N,
')

OF

@

a
Gt
. s Cws

1 +rr
'4.‘.
Y X
2 oot

Tty

is to use the representation integral for the traction componerts, which can

2,

o

NS
27,
¥

Pe
b

pbe obtained by substituting Eq.(2.7) into Hooke’'s law and by using

fS(: - aSCn
p Pq q°

&

Lot

The result is

w
)

» e
[

-

1] B ¢
=
uh

]

G +
f:c(i) = - Coqua®q® {+ 955k, 8 (XY Bu; (PIngdACy), x b o (2.8)
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[
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EY ¢

'3
AP

Boundary integral equations can be derived from Eq.(2.8) by letting x - N

PP

and by applying the boundary conditions (2.5). The system of boundary
integral equations that is obtained in this manner is, however,

hypersingular when the observation point x and the source point y coincide,

. G .
since the terms aijk,ﬂ(ﬁ'z) behave as (Appendix A)

T 1
i oS (xey) - 4T P a0 (2.9)
O ijk, 2 2L 1 3D ' :
;) r3 ’ = »
\";'-::
Ay
SNy where r = Ix-zl. These higher order singularities prevent a reliable direct
.‘:‘\v' -
. .")
i?f numerical solution of Eq.(2.8).
o To overcome these difficulties Budiansky and Rice (1979) used partial
;:é integration to reduce the higher order singularities, and to derive a system
)
.‘..‘H'.» s .
}‘rj of BIE’'s for a flat crack in the plane Xy = 0 (see Fig. 1). Regularization
:12“
Lo ™ o ' '
W rocedures have also been proposed by Sladek and Sladek (1984), by Nishimura
y Yy
;xﬁx‘ P
Ee
-*; \ and Kobayashi (1987), and by Budreck and Achenbach (1988).
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For a two-dimensional crack configuration, analogous formulations have
been proposed by Tan (1975), by Schmerr (1982), and by Zhang and Achenbach
(1988). The corresponding elastostatic crack analysis using BIE methods has
been presented by Cruse (1975) and Weaver (1977). A comprehensive
discussion and an extensive list of references has been given by Cruse
(1987).

All the studies mentioned above have used partial integration to reduce
the higher order singularities (2.9). This procedure is easily implemented
for flat or straight cracks, but it becomes quite cumbersome for curved
cracks. In this paper, we will present a new BIE formulation which follows
very naturally from a path independent integral, and which has lower order

singularities than the ones obtained in the conventional BIE formulation.

3. The jk Integral and Related BIE's

In elastostatics the Jk integral has the form (Eshelby, 1951, Rice,

1968)

Iy -Js' (W5jk - aijui,k)njds , 3.1

where S is the surface of a body with volume V, nj is the outward normal

vector, and W is the elastic strain energy density

(3.2

=
]
£ =

g, €. .
1) 1]
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The integral Jk' which vanishes if there are no body forces and

singularities present in V, is usually referred to as a path independent

integral or a conservation law. The application of the J1 component as a

relevant crack-tip parameter in linear and nonlinear fracture mechanics has
been well established (see Moran and Shih, 1987). It can easily be shown

that Jk = 0, by applying the divergence theorem, by using

W
i3 T de.. (3.3)
1]
and by employing the equilibrium equations oij j - 0. The generalization of

Jk to time-harmonic elastodynamics, which is denoted by jk’ can be written

as

N g [(w+L)5jk - aijui‘k]njds , (3.4)

where L is the kinetic energy density

L = % pi.u, = - % pwiu.u, . (3.9)

Here also jk = 0, under the same assumptions as for Jk' The proof is again

very simple if we apply the divergence theorem, use Eq.(3.3) and employ the
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i equations of motion (2.1). We note that jk = 0 holds for any time-harmonic
o
ﬁ:; elastodynamic state which satisfies Eqs.(2.1)-(2.3).
.::: Now let us consider two independent time-harmonic elastodynamic states
s» for the same body:
zg
Lo S S S S (3.6)
N i ij ij
:
o
=
s u§2) , egg) , ag?) (3.7)
e 1 1) 1]
)
o These states satisfy the equations of motion (2.1), the strain-displacement
(:El- equation (2.2) and Hooke's law (2.3). By virtue of linear superposition,

the sum of (3.6) and (3.7)

‘-f'.
'u;: u, = ugl) + ugz) , €.. = eg¥) + egg) , O.. = a§¥) + agg) , (3.8)
:%j‘ i i i ij ij ij ij ij ij

's:&;

%y

also satisfies Eqs.(2.1)-(2.3). Substitution of (3.8) into (3.4) yields

l'f.l.’

.
A “.i 2 Mx

LTy
PGS,

J (u,} =7 [ugl)] +J ugz)] + f [(u(l)a(z) - pw2u§1)u§2))8

3 m,n mn ik

'
e

>
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Nh Gy
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(2)] must vanish because uil)

(2)

Clearly, the terms J and u;

ugl)] and J

i KlY

are two independent elastodynamic states. Since jk {ui] = 0 we therefore

conclude that

[ orits(2 pwzuil)ugz))S. w2 (b (2)] -0 . (3.10)
S

m,n mn i,x% ij 1j

Equation (3.10) is an extension of the two-state conservation integrals
proposed by Chen and Shield (1977) for elastostatics (w - 0). The first

state is now taken to be the unknown field

(1) (1),

{ui , lJ = (ui NN , (3.11)

while the second state is selected as the fundamental solution due to a unit

point force

@) @) (S

G
{u ij ig%p LJI 4y b (3.12)

3

where ugz and a?jﬂ are 3-D time-harmonic elastodynamic Green's functions
(see Appendix A), and a, indicates the directions of the applied point
force. Application of (3.10) to the surfaces S, S& and SR (Fig.2), and use

of the Egs.(3.11) and (3.12) results in
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Lo (2iv)dS(y) + g Loe(x:y)aS(y) + g Lo (xiy)ds(y) = 0, (3.13)

5 R

where S is the surface of the scatterer, SS is the surface of a sphere of

radius §, centered at x, and SR is the surface of a sphere with radius R,

centered at x, as shown in Fig. 2. The surface S is assumed to be closed,

regular and smooth. The small sphere (radius §) is selected to exclude the
singularities in the Green's functions, and the sphere with radius R must be

sufficiently large so that the scatterer S and the sphere S& are included in

ic. The integrand I in (3.13) is given by

2k
T x5y = tfu m, n(z)amnz(x y) - pw? u (z)u 19X~ z)]S

G
- k(v)a VIS ai?(z)uizyk(§-z)}nj : (3.14)

in which % represents the position vector of the observation point, and b

represents the position vector of the source point, respectively.
After elementary calculations the second integral in Eq.(3.13) can be

evaluated as

Jo Tp(xipds(y) = - uiS(x) . as § 40 . (3.15)
6 '
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By using the asymptotic expansions of the Green’s functions for large IXI

(Appendix B) the last integral in Eq.(3.13) can be rewritten in the

following form

ik, exp(ik R)

st LIS = - 3555 “am S (egny- 292wl uiCIn, ) -
n,n exp(-ik nex)ds(y) -
) ikT exp(ikTR) (o scn ke c).
n 4nR SR ii™; T1
(6i2-nin2)nk)exp(-ikTg-§)dS(z). (3.16)
Applying the Cauchy-Schwartz inequality
fo Easpl < (Jg ds(y) *(Jg £ [2ds(p))”
R R R
-2/ R (stlf(z)PdS(Z))Ls : (3.17)

and considering the following elastodynamic radiation conditions (see Tan,

1975, Achenbach, 1982)
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{ 1lim J.

Lin fg |1o35n, -i(+2u)k ui%n, |2d5¢p) = O, (3.18)

111

'.,‘}".‘}‘
"”l‘:‘u‘-‘l
srrr L

u; ) (8, -nny|2ds(y) - 0, (3.19)
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Thus, Eq.(3.13) is reduced to
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Substitution of Eq.(3.21) into Hooke's law leads to the fcllowing
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representation integral for the traction components at x
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Equation (3.22) is a generalization of Hu's results for elastostatics

(1987).

W Application of Eq.(3.22) to a 3-D crack yields

sC

G G
£p ®) = - Coqug @) o (0 (Do (aoy) - polon (v (x-p) ] 65

PAEAS
""_t ‘J'/

At

- Aui,k(z)a§j£(§-z)}njdA(z) , X 4 A+. (3.23)
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are their

(AR

where Aui are the crack opening displacements and Aui Kk

T

derivatives with respect to Vi The last term of Eq.(3.22) disappears
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s
S

because of the continuity of aijnj across the crack faces. BIE's are

’ e
PN

obtained by letting x =~ A" as
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e

®
,Ti G +

- - )

:ti Aui,k(z)aij£(§ z)}njdA(z, , X o€ AL (3.24)
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9. The integral of (3.24) is understood in the sense of Cauchy principal
o
}:: values. No extra discontinuity terms enter (3.24) as x - at, Equation

A -
::; (3.24) is valid for a 3-D crack of arbitrary shape. The corresponding BIE's
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for a 2-D crack in plane strain and anti-plane strain can be derived

directly from (3.24). For plane strain we obtain

g

in
£, (X) = C g ng(x) {+ ([oug (Pog,

(x-y) - pw?Buc(y)e

o (x-p 16y, - du (PoB epimyds(y o x e 1T (3.25)

while for anti-plane strain we find

i G
£37(x) = 4 [ 4 ([8uy (D05,3(x-Y) - pwbuy(Pugy (- 16,

) Au3,ﬁ(z)a§73(§-z)1n7ds(z) . x el (3.26)

Here F+ denotes the insonified side of the 2-D crack (see Fig. 3) and the
superscript "g" represents the 2-D Green's functions (Appendix A). All
integrals of (3.25) and (3.26) are understood as Cauchy principal values.
The BIE's (3.24) (as well as (3.25) and (3.26)) have the advantage over
the conventional BIE formulation, i.e., Eq.(2.8), that no higher order
singularities appear. The unknown boundary quantities in the new
formulation are the crack opening displacements and their derivatives, where
the latter have the physical meaning of dislocation densities. We note also
that the procedure in deriving (3.24) is very natural, and no elaborate
manipulations, such as integration by parts, have been used. The BIE's
stated here apply also to elastostatic crack analysis by letting w -~ 0, and

by using the corresponding elastostatic fundamental solution (Kelvin

solution). For the static case, the term containing Aui disappears in the
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BIE’s, and the only unknown quantities are the dislocation densities. The

e new formulation allows an immediate numerical implementation. When bu, has
LN
o
;:j: been computed equation (2.7) can be employed to calculate the displacement
| .5.’\
!’) field.
fi : As pointed out by Carlsson (1974), Bui (1977), and Moran and Shih
;2&. (1987), there exists a complementary integral to Jk which is5 also path
i independent. For time-harmonic elastodynamics, the complementary integral
b .
TN may be stated as
el
R
o
: =C c c
.!7 I - fs [(W- + L )sjk - aij'kui]njds 0, (3.27)
s
'fl; where WS and L are defined by the Legendre transformation
o
L c
- W c.€.. = W, .
‘{St %13%1j (3.28)
1“‘.
-
- ¥ L 3.29
;}}:’ L™ = piu, - , (3.29)
LA
A
‘ChL
o
® and W and L are given by (3.2) and (3.5). The assumptions in deriving
SO
i -
D ﬁ;: (3.27) are the same as for JkA The proof of Eq.(3.27) can be performed
o
K
:u”. directly by using the divergence theorem, by considering the relation
9.
.5
O
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h::&:‘: Ei' - S—ZL—' , (3.30)
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and by employing Eq.(2.1).
Following the same procedure as in deriving Eq.(3.22), a novel
representation integral for the scattered traction components fsc(§) is

obtained from (3.27) as

000 = - Cpapng @ [ U’ (po s &Y - petuE (U] () 16

lJ k(z>ul£(x ¥)-us <Y>”1Jz S LILHICORNE R I (3.31)

Corresponding BIE’'s can be derived by applying Eq.(3.31) to the crack faces

and by letting x - A, taking into account of the boundary conditions (2.5).
Such BIE's are, however, again highly singular due to the presence of the

term gGJE k(x y). Hence, Eq.(3.31) has no advantages over the conventional
formulation given by Eq.(2.8).
4. Examples
In this section we will apply the BIE's (3.24) (as well (3.25) and
(3.26)), which are valid for arbitrary shaped cracks, to some simple cases.

We first consider a flat 3-D crack in an unbounded body subjected to an

: . . +
incident time-harmonic wave. The crack is located in the plane x, = 0

3

Hence n, =n, = 0 and n, = 1. The BIE's (3.24) separate into two decoupled

equations:

035 (x; 1%, .0) = {+ ([O+28)00, (x-y) - *nga(§'2>1Au3,a<z> .
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{ - P (A2p)uga(X-y)Aus(Y) 1AA(Y), X € AT, (4.1)
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J-l
v 0 G
“' ﬂ3(x1, 27 ) - #I 7ﬂ & z) - 0033(5'1)657]Au~a 7(2) -
.l-\". »
v
AN
. G +
2 -
potu g(x-y)du, (y)1dA(y), x € A, a8 = 1,2 (4.2)

s
S
i
:: in in . s e
N where 933 and 053 are stress components corresponding to the incident wave.
2
s We note that Eq.(4.1) is for the normal crack opening displacement Au3 while
N
f:: Eq.(4.2) is for the transverse crack opening displacements Au, . Equations
.\'::.

‘ (4.1) and (4.2) have exactly the same forms as those derived by Budiansky
,j- and Rice (1979) who used the conventional formulation iq conjunction with

partial integration.
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BIE's for a flat 3-D crack under static surface loading o 0)

33(%1.%,,

-

and oﬂ3(xl,x2,0) can be obtained from (4.1) and (4.2) by letting w - 0 and

o

. PR Y ]
s ..'_)4 Al

by employing the corresponding static fundamental solutions. The result is
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3r }Aua'v(x)dA(z), X ¢ Ai . (4.4)

r r
a LB,y
Here r = |§-z|, and v denotes Poisson’s ratio. Equations (4.3) and (4.4)

are identical to the equations stated by Weaver (1977).

Next, we consider a straight 2-D crack for states of deformation in

plane strain and anti-plane strain. The crack is defined by X, = Oi,
lel < a. For the case of plane strain, the BIE's (3.25) become
in - g g
alz(xlro) = ,fa ([0111(5'2) = 0122(?_(’2)]&11,1(}’1)
e r2ud . - i
pw2u (x-y)auy (v)Mdyy, x| <&, (4.5)
in 2 g g
022(Xlr0) = {a (e + 2“)0112(§'z) - A0221(§'2)]AU2,1(Y1) -
-p0? (A + 2p)ud) (x-y)auy(y))dyy, x| < a (4.6)

while for anti-plane strain Eq.(3.26) takes the following form

. a
o35 (% 0 = u J Uof)5 (o 1(7) - petugy (erpauy(y)1dyy,

|x;] < a. (4.7)

N L AT T e e A AT e "o MW X W o Y o T M R e M 0 W W ) " .
Ve ;“,‘:w:"‘h”, L) ‘-{':V\ }"v“,."u \“ S '\"‘\ " ‘h"'\} .‘1‘ \Sv"'\
Al ARNN M EN, 5 o, T 508,05 05 W0 Wa 05 W)

0T R RN R

he
"

-
e




.':s\
NN
-
o :
o
ALY 20
\;‘
x«*‘)
M)
§
q - The BIE's (4.5) and (4.6) have been derived by Tan (1975) via the
;.ﬁj conventional formulation. For plane strain deformation, the BIE for the
:Sj normal crack opening displacement, Au2 (Mode I), decouples from the one for
s
l:j the transverse crack opening displacement, Au1 (Mode II). For a 2-D crack
‘f}: under static loading alz(xl,O), azz(xl,O), and 032(x1,0) we obtain from
(ﬁ;:
A
S (4.5) and (4.6)
P
::%: a Aul 1
i 919(%1,0) = 795 f Ly Y %l <a (4.8)
"
"-r:
’ ;
DA a Au2 1
~ “22%1:0 = Tty I U (4-9)
T

Lo W
__

L4

for plane strain, and from (4.7)

-q

)

Lt

)
.
.N...
(. 1 3 843,

D) 04,(%7,0) = 5= -y dy, . Ix;l <a (4.10)
A -a 1
1oy
Vi

<

l\'l

:f for anti-plane strain. Equations (4.8) - (4.10) are integral equations for
_‘;‘ dislocation densities, and they are again well known (see Mura, 1987).

")

ol
A 33 The BIE's presented here must, in general, be solved numerically.
sy
:‘¢3 Special care must be taken in the numerical implementation to account for
) )

.,_.' the local behavior of Aui and Aui j near crack edges, and for the
':-:‘ ¥
l --. . - I3 :
o singularities of the Green's functions at x = y. For 2-D cracks subjected
.

-

by static loading the method developed by Erdogan et al. (1973) has been
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frequently used, while Zhang and Achenbach (1988) solved the modified BIE's
of (4.5) and (4.6) numerically for time-harmonic wave scattering problems.
For a flat 3-D crack numerical methods have been proposed by Polch et al.
(1987) for the static case, and by Nishimura and Kobayashi (1987) for the
dynamic case.

5. Concluding Comments

A novel application of an elastodynamic conservation integral, the jk

integral, to elastodynamic and elastostatic crack analysis has been

presented. Boundary integral equations follow from J, in a direct and

k
natural way. These equations immediately have lower order singularities
than the ones obtained in the conventional manner by the use of the Betti-
Rayleigh reciprocity integral. This is an impértant advantage for the
development of a numerical procedure for solving the BIE's, and for an
accurate calculation of the strains and stresses at internal points close to
the crack faces. For 3-D or 2-D cracks of arbitrary shapes the BIE's
presented here have simple forms, and they do not require integration by
parts, as in the conventional formulation. In the dynamic case, the unknown
quantities are the crack opening displacements and their derivatives
{dislocation densities), while in the static case only the dislocation
densities appear in the formulation. Thus, higher order shape functions for

Au; are desirable in the dynamic case. The complementary conservation

integral ji gives rise to more singular BIE's which offer no advantages over

the conventional equations.
The representation integral for the traction components, Eq.(3.23), can

be used to derive BIE’s for general boundary value problems (not necessary
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R
3 .-\‘~ .
A K
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! \.l-
i ' cracks) of time-harmonic elastodynamics or elastostatics. The advantages
M
B and drawbacks of this approach compared to the conventional formulation have
A been discussed in the paper by Hu (1987).
,i:; As pointed out by Hu (1987), new BIE's can be derived from other
)]
?j:_ conservation integrals. Following essentially the same procedure as
,zi:‘ described in section 3, the present authors have obtained another set of
PN representation formulas for combinations of ui(§) and ug J.(5) from the well
B known M and Lk integrals (see Knowles and Sternberg (1972), Budiansky and
:iﬁ Rice (1973)). The significance of these representation formulas and their
._r_".
;:.@f associated BIE's for solving boundary value problems is under investigation.
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Appendix A: Green's functions

The Green'’'s function for the 3-D time-harmonic elastodynamic state is

given by (see Tan, 1975, Achenbach et al., 1982)

1 [exp(ikTr) ) exp(ikLr)] exp(ikTr)
,ik

G
Ui (x-y) = r T 4rur ik

(A.D)
brpw?

where

Ix -yl . (A.2)

. . G N : : c .
The function uik(§-x) denotes the displacement-in the i-direction observed
at position x due a unit force in the k-direction, applied at position Y-

The corresponding components of the stress tensor follow from Hooke's law

G G
gijk - Cijmnumk,n ’ (a.3)

Similarly, the Green's functions for the 2-D plane strain and anti-plane

strain time-harmonic elastodynamic states are

i

g oY = (1 o (D (1)
ua7(§ v) rp? {[HO (kTr) Ho (kLr)],ay + k%6a7H0 (kTr)} , (A.4)
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respectively, where

Hél)(-) denotes the Hankel function of the first kind

and zeroth order. Expressions for the stress components can be obtained by

using
- g ;
aaﬁ7 C&ﬁinuEY,ﬂ , for plane strain , (A.6)
o . = G ub for anti-plane strain (A.7)
3a3 33,a ’ ’ )

The Kelvin solution for the 3-D elastostatics case may be written as

g R ——_t . i
Ui T Terp(Toyr (G908 * T 57 i (4.8)
while for 2-D elastostatics we have
8 v m L i } .
ua7(§ Y) Brp(l0) [(3 4u)6a12nr r,ar,7] , (A.9)
w8, (x-y) = - = fnr (A.10)
33\ 2Y 2np , .

-
L
L

AT
\J

“Jb. for plane strain and anti-plane strain, respectively. The corresponding
o
‘:w\ stress components for elastostatics follow from the Egs.(A.3), (A.6) and
i | .

.'. (A.7).

) . . ,
B We note that both the dynamic and the static Green’'s functions possess
\ ,-- 1

P the same singularities at r = 0, namely,
f?.‘

®.
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G 1
( B Yik T ¢
7,
ok agjk - %; as r - 0 s (A.11)
% N
it ijk,2  rd
h -'{
)
sp.}
i el for the 3-D case, and
g & ~
uaﬂ , u33 inr
g g 1
oaﬁy v 93,3 - as r + 0 s (A.12)
g g .
%aBvy,5, 03a3,ﬁ r?
for 2-D plane strain and anti-plane strain. All derivatives in the Green's
functions are understood to be with respect to y.
Appendix B: Asymptotic Expansions of the
:}l; Elastodynamic Green's Functions
ﬁ}; For |y| >> |x|, the following approximation holds
.-,‘::: A
.:_‘.‘._‘ r = 'ZE-X[ == [zl - Z.}.E , (Bl)
i
i
._ A
?H; where y denotes the unit vector .long y. By using (B.1l), asymptotic
.':-\.'
;&El expressions for the 3-D elastodynamic Green's functions are obtained as
[ .
o S < s oAb,y SRUED (8.2)
e u; ,(x-y) = Az, (y -—————f——-— exp(-ik, y-x) , .
~ s z
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- G ] 3 ] ¢ -~ exp(ik lzl) y A.
| Tl = ke i ——Z;Tgf———— exp(-ik.yx) | (B.4)
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Also, k

L and kT are the wavenumbers of longitudinal and transverse waves,

respectively.

For a large sphere of radius R (see Fig. 2), the following relations

hold

[yl =R (B.12)

A

Top =Y ™ N (B.13)

where o is the components of the unit outward normal vector of the sphere.

Substitution of Eqs.(B.2) - (B.13) into Eqs.(3:13) and (3.14) yields

Eq.(3.16).
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For the dynamic case, the unknown quantities are the crack opening displacements
and their derivatives (dislocation densities), while for the static case only the
dislocation densities appear in the formulation. For plane cracks the boundary
integral equations reduce to the ones obtained by other investigators.
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